
Sequential Random Sampling Revisited: Hidden Shuffle Method

Michael Shekelyan Graham Cormode
University of Warwick University of Warwick

Abstract

Random sampling (without replacement) is
ubiquitously employed to obtain a represen-
tative subset of the data. Unlike common
methods, sequential methods report samples
in ascending order of index without keep-
ing track of previous samples. This enables
lightweight iterators that can jump directly
from one sampled position to the next. Pre-
viously, sequential methods focused on draw-
ing from the distribution of gap sizes, which
requires intricate algorithms that are difficult
to validate and can be slow in the worst-case.
This can be avoided by a new method, the
Hidden Shuffle. The name mirrors the fact
that although the algorithm does not resem-
ble shuffling, its correctness can be proven
by conceptualising the sampling process as
a random shuffle. The Hidden Shuffle al-
gorithm stores just a handful of values, can
be implemented in few lines of code, offers
strong worst-case guarantees and is shown to
be faster than state-of-the-art methods while
using comparably few random variates.

1 Introduction

Drawing a uniform random sample of items is a pro-
cedure that is foundational to a plethora of statistical
and computational tasks, from hypothesis testing to
scalable machine learning. Viewed as a randomized
computational primitive, uniform sampling is simple
to state, and widely implemented in programming lan-
guages, libraries and tools. It is so fundamental that
little attention is typically paid to the process of draw-
ing a sample. However, when we start to consider the
constraints that arise when working with large volumes

of data, it becomes apparent that sampling is not so
trivial as it first seems.

The challenge arises when we do not have full random
access to the (discrete) population from which we wish
to draw the sample. For example, this may be when
the items are being observed incrementally as a stream
of observations, or when the items are distributed
over a collection of observers. These scenarios have
been addressed by Reservoir Sampling (Vitter, 1985;
Efraimidis and Spirakis, 2006), and distributed sam-
pling (Cormode et al., 2010; Tirthapura and Woodruff,
2011). In this paper, we revisit the question of Se-
quential Random Sampling (SRS). Here, the size of the
population N is fixed, but we must emit the n sampled
items in the order in which they are stored. The origi-
nal motivation for SRS in the 1980s was data stored on
tape, such that a single linear pass over the input was
feasible while random access or multiple passes were
not. The additional requirement of SRS is that each
sampled item should be emitted as soon as it is ob-
served, for immediate processing, so that the sampling
algorithm should have a limited memory footprint.

In the intervening years, the importance of tape stor-
age has diminished. However, the question of SRS re-
mains fundamental, and new motivations have arisen
due to the ballooning of data set sizes on distributed
storage or received as data streams. Here, the prohi-
bition of random access, and the requirement to emit
samples as they are observed re-emerges, due to large
item sizes and large sample sizes.

1.1 Baseline Sampling Methods

More formally, we want to obtain a simple random
sample (without replacement) of size n from a popu-
lation of size N . This means that any of the possible
subsets has to be equally likely to be selected. For any
combination of k items, the probability that they all
appear in the simple random sample is equal to the
number of subsets containing the combination

(
N−k
n−k

)
divided by the total number of subsets

(
N
n

)
, which is

equal to
∏k−1

j=0
n−j
N−j . The inclusion probability for an

item is therefore n
N and for a pair of items n(n−1)

N(N−1) .

Sequential Random Sampling Revisited: Hidden Shuffle Method

sampled range not sampled

initially low-items initially high-items

0 2 N− 4 . . . n− 1 n . . . 1 N− 1 N− 2 N− 3

low↔low swap low↔high swap high↔high swap

Figure 1: Conceptualising sampling as a shuffle for sample size n and population size N with example swaps.

A common algorithm used in libraries1 is to obtain a
sample by independently generating positions between
0 and N − 1 and use a hash-map to detect duplicates.
This can work well when the sample size n is very
small. A downside of such an approach is that the
hash-map can grow up to n entries and we would need
to extract the sampled locations in sorted order if we
wish to visit the sampled items sequentially.

A simple approach that addresses these two problems
is to go through all items in ascending order and se-
lect each item i ∈ {0, . . . , N−1} with probability equal
to the number of items left to sample divided by the
number of remaining items N − i as in Jones (1962).
Here, the time cost is proportional to N , and we need
to make O(N) random sampling decisions. This is
acceptable when n is close to N , but otherwise we
seek solutions whose cost is closer to n. This was the
focus of much of the early work on sequential ran-
dom sampling, which sought to determine how many
items to “jump over” before the next item to sample.
However, it turns out that this distribution of gaps
between items is not easy to deal with and leads to
rather intricate algorithms such as Vitter’s Algorithm
D (Vitter, 1984, 1987) based on Neumann’s rejection
sampling. While the “difficulty” of algorithms is an
elusive notion and may be too subjective to quantify,
we nevertheless seek approaches that are “simple” to
describe. Simplicity is highly desirable, not just for ex-
pository and didactic purposes, but because a simple
algorithm can be (correctly) ported easily to all types
of programming languages, libraries and frameworks.

1.2 Our Approach

In order to obtain a conceptually simpler algorithm, we
break away from the perspective of directly accessing
the distribution of gaps. Instead, we make use of a dif-
ferent paradigm, based on random permutations. We
will consider the process that draws a sample by taking
the first n items of a randomly permuted population of
size N . Clearly, each subsequence of a randomly per-
muted sequence has to be a random subset, see also
Sunter (1977). We can then simulate the execution of

1The popular languages Python (www.python.org) and
R (www.r-project.org) use it in their standard library.

a random shuffle algorithm over the population items
and keep track of which elements would end up as the
first n items.

A trivial algorithm to randomly permute a set is to
uniformly select a random element, remove it from the
set and continue the same way with the remaining ele-
ments. The order in which items are removed forms a
random permutation. An iterative formulation of this
algorithm is Knuth’s shuffle which steps through all
positions between 0 and N − 1 of an initial arbitrary
ordering of the set, and swaps the item at position i
with a random position between i and N − 1.

We now argue that for a sample of size n, we can
terminate this procedure early. Since we always select
the first n items of a randomly permuted sequence, it is
useful to conceptually differentiate between low-items
whose position is smaller than n and the remaining
high-items (cf. Figure 1). Then we can classify the
swaps in Knuth’s shuffle into low↔low, low↔high and
high↔high swaps, where an X↔Y swap occurs when
processing an X-item which is swapped with a Y-item.
Observe that the algorithm makes no high↔low swaps,
as at position i it cannot swap with items at a lower
position. When Knuth’s shuffle reaches position i ≥ n,
it can only perform high↔high swaps which do not
influence the composition of our sample. Thus, we can
focus our attention to low↔low and low↔high swaps.

This means we can just perform the first n swaps to
obtain a sample. A similar idea is proposed by De-
vroye (1986) and later Bui (2015), but implementing
this directly requires space proportional to n to record
which items have been swapped into high positions.
Moreover, to go through the sample sequentially, we
need to collect and sort the full sample.

We can remove both of these limitations by realizing
that we can postpone the selection of which items are
swapped, and instead we just need to fix the num-
ber of sampled items in each category (low or high).
Consequently, we sample the high-items and low-items
separately. Once we determine how many high-items
are in our sample, we immediately know the number
of low-items. Sampling these low-items is easy to do,
as the total number of low-items is small.

Michael Shekelyan, Graham Cormode

Importantly, if we are only interested in the high-items
in our sample, only low↔high swaps in Knuth’s shuf-
fle are relevant, as low↔low swaps only permute low-
items. As the low↔high swaps only occur in the first n
iterations of Knuth’s shuffle, we can simulate the shuf-
fle up to that point and count the number of low↔high
swaps H. Since any high-item that is swapped into the
sample can no longer be swapped out of the sample, we
only need to determine the high-items of the low↔high
swaps. Lastly, as each low↔high swap can select any
high-item, the high-items of the low↔high swaps are
just H independently drawn high-items.

As a result, we first draw the number of low↔high
swaps H by simulating the shuffle up to position n,
then draw H independent high-items, calculate the
number of low-items L as n minus the number of dis-
tinct high-items and at the end draw L low-items. The
key here is that the shuffling approach means that the
draws to the high-items are with replacement, which
is much easier to achieve. If we pick the same high
location more than once, the semantics of shuffling are
that the repetitions are interpreted as draws from the
low region (since, in the shuffling algorithm, the first
selection of a high-item would have swapped a low-
item into its place). Hence, we just need to treat the
duplicate samples as incrementing L, the count of low-
items. The final step to sample L low-items is easy to
do, as the total number of low-items is at most n in
which case naive SRS algorithms such as Algorithm A
of Vitter (1984) are sufficiently efficient for this final
“mopping up” stage.

Now, the only open question is how do we draw the
sample in ascending order. One trick we use is to ob-
tain sampled indices in descending order but then mir-
ror the sampled positions to obtain ascending order.
As we can do this when we report samples, we can
focus on sampling in descending order without loss of
generality. It remains to get the H independent high-
item locations (with replacement) in non-increasing or-
der. This is a well-understood problem that can be
answered efficiently. The basic idea is to draw uni-
form variates in descending order by exploiting order
statistics and then employ inverse transform sampling.
This uses the fact that the maximum of k standard
uniform variates has a closed-form distribution given
by k
√
U(0, 1). After we obtain the high-items, we can

sample the low-items in descending order by employ-
ing Algorithm A (Vitter, 1984).

2 Related Work

Reservoir sampling (Vitter, 1985) is one of the best
known sampling approaches as it requires no knowl-
edge of the population size and maintains at any point

a reservoir of items that is a simple random sample.
One can efficiently jump to the next reservoir item (Li,
1994; Efraimidis and Spirakis, 2006), but in order to
apply this for sequential sampling, one would again
need to somehow identify which reservoir items will
remain until the end or need to retain and sort the
reservoir at the end. If the population size is known
there exist many alternative methods to directly ob-
tain sampled items.

In case of random access, the most common method
is “selection sampling” where items are drawn inde-
pendently while duplicates are rejected. The redun-
dant draws can be avoided either by employing the
swapping method (Devroye, 1986; Bui, 2015) or tak-
ing Robert Floyd’s very simple and elegant approach
(Bentley and Floyd, 1987). In case of sequential access,
the most common method is to pick each item with an
increasing probability, which confusingly is also often
called “selection sampling” or Algorithm S (Fan et al.,
1962; Jones, 1962; Bebbington, 1975; Knuth, 1969).
As Algorithm S is not useful for very large population
sizes, more sophisticated methods are discussed in the
following.

Bernoulli Sampling picks each item with a fixed prob-
ability p and will also produce a simple random sam-
ple, but the size of the sample is no longer fixed and
instead follows a binomial distribution with expected
value pn. Such a sample can be obtained sequentially
by generating geometric variates (that can be easily
obtained from uniform variates) to draw gaps between
items. Bernoulli Sampling can be adapted to give a
fixed sample size by dropping random samples when
oversampling and sampling multiple times when un-
dersampling, e.g., Algorithm SG (Ahrens and Dieter,
1985), but this leads to delays in the reporting of sam-
ples and introduces a storage and computation over-
head. The storage overhead can be reduced in case of
pseudorandom number generation, where one can re-
play a sample by re-using the same seed (Ahrens and
Dieter, 1985).

Hypergeometric distributions describe the number of
items between subgroups (it can be thought of as
a without-replacement analog of the binomial distri-
bution) and can enable sequential random sampling
(Sanders et al., 2018). The basic idea is to split the
population items into two halves (for odd sizes picking
a larger first half) and draw from the hypergeometric
distribution with parameters (N, dN2 e, n) to generate
the number of samples in the first and second half
and then recursively apply the same approach to both
halves. By proceeding in a depth-first manner and
skipping empty halves, this allows to obtain samples
sequentially by generating O(n) hypergeometric vari-
ates in total and storing up to O(logN) values, i.e.,

Sequential Random Sampling Revisited: Hidden Shuffle Method

Table 1: Methods to obtain without-replacement sample of size n from population of size N .

time space variates latency simplicity (subj.)

Conventional and Reservoir Sampling

With-Replacement+Duplicate-Rejection Θa(n) Θ(n) Θa(n) high very simple
Swapping Method (Devroye, 1986) Θ(n) Θ(n) Θ(n) high very simple
Floyd’s [Alg. F] (Bentley and Floyd, 1987) Θ(n) Θ(n) Θ(n) high very simple
Reservoir [Alg. R] (Vitter, 1985) Θ(N) Θ(n) Θ(N) high very simple
Reservoir-Skip [Alg. K,L,M,Z] (Li, 1994) Θa(n log N

n
) Θ(n) Θa(n log N

n
) high simple

Rand. Key (Efraimidis and Spirakis, 2006) Θa(n log N
n

) Θ(n) Θa(n log N
n

) high simple

Sequential Sampling (known population size)

Sorted Non-Sequential Ωa(n logn) Θ(n) Ωa(n) high very simple
Algorithm S (Fan et al., 1962; Jones, 1962) Θ(N) Θ(1) Θ(N) high very simple
Bernoulli (Ahrens and Dieter, 1985) Θa(n) Θ(n) Θ(n) high simple but tedious
Inverse-Transform [Alg. A] (Vitter, 1984) Θ(N) Θ(1) Θ(n) high simple
Hypergeometric (Sanders et al., 2018) Ω(n) Ωa(logN) Ω(n) low intricate variate gen.
Reject-Accept [Alg. D] (Vitter, 1984) Θa(n) Θ(1) Θa(n) very low complicated
Hidden Shuffle [Proposed] Θ(n) Θ(1) Θ(n) low simple

how many sampled items occur in the second halves
at each level. A downside of this approach is that it
shifts all of the complexity on to the generation of hy-
pergeometric variates (Stadlober, 1990), which comes
with many practical challenges especially when N is
large2.

Vitter (1984; 1987) and Devroye (1986) describe mul-
tiple methods to draw from the distribution of gaps
between subsequent sampled items (denoted by F (s)),
most notably Algorithms A and D. Algorithm A em-
ploys inverse transform sampling in combination with
a sequential search through the CDF, i.e., it searches
for the minimal s whose F (s) is larger than a generated
uniform variate, which requires at most O(N) time as
each F (s+1) can be computed from F (s) in O(1). Al-
gorithm D draws from a simpler distribution similar to
the gap distribution and then rejects with an adequate
probability to obtain the correct probabilities for each
gap. If n is close to N the rejection probability is
very large and the algorithm has to use Algorithm A
as a fallback. The rejection framework of Algorithm
D leads to a rather intricate algorithm, which so far
has only been adopted to the standard library of the
programming language D, despite good runtime per-
formance and full support for sequential sampling. We
show experimentally that our much simpler proposed
approach is faster.

A comparison of approaches can be found in Table 1,
including our (subjective) judgment on the simplicity
of the algorithms. Here, asymptotic costs with a sub-

2The popular Python library numpy that provides an
implementation of (Stadlober, 1990) cautions users to not
exceed sizes of a billion and the algorithm requires the value
of ln(k!) for 0 ≤ k ≤ N which has to be pre-computed for
small values and approximated for large values.

script ‘a’ denote average case, otherwise they show the
worst case. We do not provide the formal complexities
of latencies as none of the approaches achieves O(1),
and the formulas are more difficult to derive and in-
terpret.

3 Sequential Random Sampling

We now give the full description of our shuffling-based
sequential random sampling (Hidden Shuffle) method.
There exist efficient and straightforward sequential ap-
proaches for simple random sampling without replace-
ment (WOR) from small populations, and for simple
random sampling with replacement (WR) for any pop-
ulation size. The basic idea of our approach is to use
the random shuffle as a conceptual model to reduce
sequential WOR to these two simpler problems.

3.1 Shuffle-Based Sampler

Knuth’s shuffle (Knuth, 1969) is a well-known algo-
rithm to obtain a random permutation of a sequence:

Algorithm 1: Random shuffle (Knuth, 1969)

foreach i ∈ (0, 1, . . . , N − 2) do
j ∼ U{i, i+ 1, . . . , N − 1}
swap items at positions i and j

In each iteration, Knuth’s shuffle picks a random re-
maining element into the i-th position, such that after
each iteration all preceding elements are a random sub-
set of the population. Thus, if we terminate after the
first n swaps, we obtain a WOR sample of size n. Con-
ceptually, we can therefore consider running the first
n iterations of Algorithm 1.

Michael Shekelyan, Graham Cormode

To describe our approach, we split the range of item in-
dices {0, 1, . . . , N} into low-items {0, 1, . . . , `− 1} and
high-items {`, ` + 1, . . . , N − 1}. In what follows, we
assume that the split point ` is chosen as the target
size of the sample, ` = n. Accordingly, we can also
view our sample as the union of various low-items and
high-items, i.e., S = L∪H where L ⊆ {0, 1, . . . , n−1}
and H ⊆ {n, n+ 1, . . . , N − 1}. Our strategy is to first
obtain the sample over the high-items H and then ob-
tain the sample over the low-items L separately.

As the sampling is symmetrical, any algorithm that se-
quentially obtains samples in descending order can be
converted to ascending order by reporting each sam-
pled item x as (N − 1)− x. We make use of this mir-
roring trick, as it is more convenient for us to sample
items initially in descending order.

Algorithm 2: Hidden Shuffle Sampling Method

input : Population size N and sample size n
H ∼ n−

∑n−1
i=0 Bernoulli(1− N−n

N−i) 1

H ∼ Unique(WRH{n, n+ 1, . . . , N − 1}) 2

L ∼WOR(n−|H|){0, 1, . . . , n− 1} 3
output: random sample (H∪L) ⊆ {0, . . . , N − 1}

Algorithm 2 gives the overview of our approach. In
step 1 we determine H, which counts how often
Knuth’s shuffle would swap position i < n with a po-
sition j ≥ n (number of low↔high swaps, cf. Fig-
ure 1). As the probability that for all other cases
is pi = 1 − N−n

N−i , we can express it as a Poisson

Binomial Distribution, i.e., H ∼ n −
∑n−1

i=0 Bi with
Bi ∼ Bernoulli(pi). We subtract here from n and
model successes as not being a low↔high swap, be-
cause low↔high swaps are much more prevalent for
large N and it simplifies the presentation to have small
success probabilities in the discussion of step 2.

In step 2 we (independently) sample H high-items
with-replacement, which corresponds to the j’s with
which Knuth’s shuffle will swap position i < n with a
position j ≥ n. As this sampling is with-replacement,
each j can be selected multiple times. The first time
j is selected, Knuth’s shuffle encounters a high-item
at position j and swaps it with a low-item at position
i. As a result, if j is selected again, Knuth’s shuffle
will now encounter a low-item at position j. Thus,
repeated draws of j simply lead to more low-items and
we just need to find the unique items to obtain the
sampled high-items H, which in turn determines the
number of sampled low-items |L| = n−|H|. As we are
sampling indices with-replacement here, we can reduce
the sampling of H in descending order to sampling
order statistics of standard uniform variates. Sampling
in descending order also has the side effect that we can

immediately detect repetitions of sampled items.

In step 3 we know the number of low-items L = L
that we need to sample from the set of low-items. This
is a (smaller) instance of the problem we started with,
where the domain has shrunk from N to n. As the
domain size is small, we can employ an approach such
as Algorithm A that requires just one variate per sam-
ple. Alternatively, we could apply our proposed Hid-
den Shuffle approach recursively based on a smaller
threshold ` until the sample is full.

3.2 Efficient Algorithm

Next, we describe how to efficiently implement the
steps of the above outline approach.

The Full Algorithm. Code 1 shows our approach
implemented in Python3 (version 2.3 and upwards). It
takes the population size N and sample size n as inputs,
and outputs an iterator over the sampled items.

Step 1: Two-lane generation of Poisson Bino-
mial Variates. In this step the number of low↔high
swaps (cf. Code 1, lines 4-13) is generated, which
is then used in the subsequent step to sample high-
items with-replacement where duplicates are ignored
and simply increase the number of sampled low-items.

The quantity H follows a Poisson binomial distribu-
tion for which Le Cam’s theorem gives approximation
bounds based on the Poisson distribution, but we in-
stead aim to generate a variate efficiently with the help
of the geometric distribution. The basic idea is that
most of our Bernoulli trials are expected to fail and if
they fail for a larger success probability q, then they
will also fail for the correct one. The trick here is that
q is shared between all subsequent trials. Thus, we can
establish two lanes, an express lane for trials that fail
even for a larger success probability q and a slow lane
for trials that succeed for q, but might otherwise fail.
We can then use the variates from the geometric dis-
tribution on the express lane and briefly switch to the
slow lane when we encounter a failed trial. It follows
a formal definition of this idea:

Theorem 3.1 (Generating Poisson Binomial). A
variate X =

∑n
i=1Bi with Bi ∼ Bernoulli(pi) can be

drawn using dn ·maxn
i=1 pie uniform variates on expec-

tation.

3The function float casts numbers to floating-point
numbers, int rounds down, uniform(0,1) uniformly draws
a random value between 0 and 1, a**b performs ab and
yield reports a result. In order to print all samples for
N = 109 and n = 10000 using Code 1 one would call for
x in seqsample(10**9,10000): print(x);

Sequential Random Sampling Revisited: Hidden Shuffle Method

Code 1 Hidden Shuffle implemented in Python

1: from math import log ,exp ,floor
2: from random import uniform
3: def seqsample(N, n): # WOR from 0..N−1
4: H = 0; i = 0 # STEP 1: compute H
5: if N > n:
6: H = n
7: while i < n:
8: q = 1.0−float(N−n)/(N−i)
9: i = i+int(log(uniform (0,1), 1−q))

10: p i = 1.0−float(N−n)/max(N−i,1)
11: if i < n and uniform (0,1) < p i /q:
12: H = H−1
13: i = i+1
14: L = n−H; a = 1.0
15: while H > 0: # STEP 2: draw high−items
16: S old = n+int(a∗(N−n))
17: a = a ∗ uniform (0,1)∗∗(1.0/H)
18: S = n+int(a∗(N−n))
19: if S < S old :
20: yield (N−1) − S
21: else:
22: L = L+1 # duplicate detected
23: H = H−1
24: while L > 0: # STEP 3: draw low−items
25: u = uniform (0 ,1); s=0; F=float(L)/n
26: while F < u and s < (n−L):
27: F = 1−(1−float(L)/(n−s−1))∗(1−F)
28: s = s+1
29: L = L−1; n = n−s−1
30: yield (N−1) − n

Proof. We have Bi =

{
0 with probability 1− pi
1 with probability pi

If we pick q ≥ maxn
i=1 pi so that x > q =⇒ x > pi for

any pi, and generate for each pi the standard uniform
variates Ui ∼ U(0, 1) and Vi ∼ U(0, 1), then we can
observe the previous probabilities by using

Bi =

{
0 if (Ui > q) ∨ (Ui ≤ q ∧ Vi > pi/q)

1 if (Ui ≤ q) ∧ (Vi ≤ pi/q)

If Ui > q, we do not need to generate the variate Vi
and since q is independent of i we can draw a geo-
metric variate G ∼ Geom(q) (that gives the number
of failures) to determine how often the case Ui ≥ q
occurs consecutively before we observe Ui < q, which
obviates the need for generating individual Ui vari-
ates. Each such geometric variate can be obtained
using G ∼ blog1−q U(0, 1)c and since E[G] = 1

q −1 and
the expected jump in each iteration is incremented to
1
q we expect to draw dqne geometric and uniform vari-
ates in expectation.

Algorithm 3: Sequential sampling with repl.
F−1(y) = byNc for the discrete uniform distribu-
tion between 0 and N − 1.

α = 1
while n > 0 do

m ∼ N
√
U(0, 1)

α = α ·m
Report item F−1(1− α)
N = N − 1

The quantity H ∼ n −
∑n−1

i=0 Bi is calculated where
each Bi ∼ Bernoulli(pi) with pi = 1− N−n

N−i . We then

pick q ≤ 1 − N−n
N = n

N (cf. Code 1, line 8) which
is at least as large as any remaining pi, and apply
Theorem 3.1 to obtain an average case complexity of
O(n n

N) for all operations in Step 1.

Step 2: Sequential With-Replacement This
step draws H high-items with-replacement in descend-
ing order (cf. Code 1, lines 15-23) and uses the mir-
ror trick to report them globally in ascending order
(cf. Code 1, line 20). With-replacement duplicates
are handled by counting them towards the number of
low-items (cf. Code 1, line 22).

Any discrete distribution can be sampled by gener-
ating random variates between 0 and 1 and applying
the inverse probability transform. We can think of a
uniform discrete distribution’s cumulative distribution
(CDF) F with K possible outcomes as a step-function
(piecewise constant function) over the real line whose
inverse function is equal to F−1(y) = byKc such that
F−1(y) is an index between 0 and K − 1 that corre-
sponds to each possible outcome. We make use of this
in Algorithm 3, along with the fact that standard uni-
form variates can be drawn in descending/ascending
order using the following (well-known) observation:

Lemma 3.2. Let Ui ∼ U(0, 1) and Vi ∼ U(0, 1) be
i.i.d. uniform random variables. Then the k-th largest
amongst V1, . . . , VN follows the same distribution as
k
√
Uk · k+1

√
Uk+1 . . . · N

√
UN .

Proof. Let an (a, b)-uniform variable be a continuous
uniform variable between a ∈ [0, 1] and b ∈ [a, 1].
The probability that a (0, 1)-uniform variable is be-
low a certain value x ∈ [0, 1] is x. Thus, the proba-
bility that n independent (0, 1)-uniform variables are
all below x ∈ [0, 1] is xN . The cumulative probabil-
ity function for the maximum of n independent (0, 1)-
uniform variables is therefore F (x) = xN and the in-
verse F−1(y) = y1/N . Thus, X ∼ U(0, 1)1/N is dis-
tributed like the maximum of n independent (0,1)-
uniform variables. To obtain the maximum of k in-
dependent (0, b)-uniform variables from (0, 1)-uniform

Michael Shekelyan, Graham Cormode

variables one can rescale by b, i.e., X ∼ b · U(0, 1)1/k

will follow the same distribution as the maximum of
k independent (0,b)-uniform variables. The second-
largest value is then the maximum of N − 1 indepen-
dent (0, VN)-uniform variables where VN is the previ-
ously obtained maximum. The claim then follows by
repeating this step until the smallest item is reached.

Step 3: Sequential Without-Replacement for
Small Populations. This step draws L low-items
without-replacement in descending order (cf. Code 1,
lines 24-30) and uses the mirror trick to report them
globally in ascending order (cf. Code 1, line 30). We
proceed here along the same lines as Algorithm A (Vit-
ter, 1984), but simplify some formulas to make it easier
to validate. Order statistics for without-replacement
samples (Nagaraja, 1992) allow us to derive the prob-
ability that a gap of size s occurs between adjacent
sampled items. The derivation observes that for N
remaining items and n remaining samples there ex-
ist
(
N
n

)
subsets that are equally probable continua-

tions of our sample. If s is the gap size and we se-
lect the item after the gap, there will be afterwards
N − s− 1 remaining items and n− 1 remaining sam-
ples, which means there are

(
N−s−1
n−1

)
equally prob-

able continuations after such a gap. This also im-
plies there are that many subsets that feature such
a gap. Thus, the probability of the gap being equal
to s is f(s) :=

(
N−s−1
n−1

)
/
(
N
n

)
for N remaining items

and n remaining samples. In order to draw the size
of the gap between selected items, we need to sam-
ple from a distribution with cumulative distribution
function F (s) =

∑s
k=0 f(k) = 1 −

(
N−s−1

n

)
/
(
N
n

)
. It

can then be deduced that the CDF satisfies F (0) = n
N

and F (s + 1) = 1 − (1 − n
N−s−1)(1 − F (s)) for s > 0

(cf. Code 1, line 27) in order to facilitate a sequential
search for F−1 (cf. Code 1, lines 25-28).

3.3 Analysis

Theorem 3.3 (correctness). The Hidden Shuffle al-
gorithm in Code 1 generates a simple random sample
of size n sequentially from a population of size N .

Proof. The algorithm simulates a Knuth shuffle (cf.
Algorithm 1) to obtain a (sequential) sample over the
high-items (≥ n) and then draws the remaining low-
items (< n) separately.

In Step 1 it simulates how many positions larger than
n−1 will be swapped with the first positions. In Step 2
it obtains all high-items that will be swapped into the
sample. In Step 3 it obtains a sample over the low-
items.

Theorem 3.4 (average-case variates & time). The
Hidden Shuffle algorithm in Code 1 is expected to gen-
erate n(1 + 3n

N) standard uniform variates. Each sam-
pled low-item x ≤ n is selected based on a uniform
variate that is processed on average in O(N

n) opera-
tions. Any other variates are processed in O(1).

Proof. On average 2n2

N variates are generated in step

1, and E[H + L] = n + 2n2

N variates in step 2 and 3.
The inverse transform look-up of Algorithm A in step
3 performs on average O(N

n) operations.

Theorem 3.5 (worst-case variates & time). The Hid-
den Shuffle algorithm in Code 1 generates at most 4n
standard uniform variates and performs O(n) arith-
metic operations in total.

Proof. In the worst-case Step 1 generates n pairs of
uniform variates, where one is used for the geometric
distribution and the other for the residual check. Step
2 and Step 3 each generate in the worst-case n uni-

form variates. Step 1 and 2 process each variate in
O(1) and in step 3 there are O(1) operations for each
of the n low-items.

Theorem 3.6 (worst-case memory). At any point the
Hidden Shuffle algorithm in Code 1 needs to store at
most 7 values.

Proof. During step 1 it uses the seven values N and n,
H, i, i old, q and p i. During step 2 it also uses seven
values, i.e., N and n, H, a, S old, S and L. During step
3 it only uses the six values N and n, L, u, F and s.

4 Experimental Evaluation

Experimental Setup. Due to the availability of rel-
evant baselines in standard libraries of Python and
D, we use Code 1 to implement Hidden Shuffle in
Python4 and port it almost line-for-line to C++5 and
the less well-known language D6. Measurements are
obtained using the command /usr/bin/time -v on
Ubuntu 18.04.4 using one of 16 cores of the same
machine with an Intel(R) Xeon(R) W-2145 CPU
@ 3.70GHz. All our implementations have been
written by the same author and were validated by
inspecting the minima, maxima and gap distribu-
tions of collected samples. The code is available on
https://github.com/shekelyan/sampleiterator.

4Executed by Python 3.7 or PyPy 7.3.2 (www.pypy.org).
5Compiled with GCC 7.50 and flags -O3 -std=c++11.
6Executed with DUB v.1.22.0 (www.dlang.org).

Sequential Random Sampling Revisited: Hidden Shuffle Method

implementation n = 106 n = 107 n = 108

(Python) Sorted-Duplicate-Rejection 1.1s (112 MB) 14s (0.9 GB) 243s (38.5 GB)

(Python) Duplicate-Rejection 0.64s (112 MB) 6.9s (0.9 GB) 978s (38.5 GB)

(Python) Hidden Shuffle method 0.83s (12 MB) 8.1s (12 MB) 87s (12 MB)

(PyPy) Sorted-Duplicate-Rejection 1.3s (167 MB) 19s (1.0 GB) 212s (12.8 GB)

(PyPy) Duplicate-Rejection 0.48s (154 MB) 5.3s (0.8 GB) 39s (10.5 GB)

(PyPy) Hidden Shuffle method 0.26s (70 MB) 1.3s (70 MB) 12s (72 MB)

(D) Vitter’s Algorithm D 0.92s (159 MB) 2.9s (159 MB) 15s (159 MB)

(D) Hidden Shuffle method 0.82s (159 MB) 1.7s (159 MB) 11s (159 MB)

(C++) Sorted-Floyd’s 0.36s (49 MB) 5.3s (464 MB) 61s (4.5 GB)

(C++) Floyd’s 0.33s (49 MB) 4.6s (464 MB) 53s (4.5 GB)

(C++) Hidden Shuffle method 0.07s (4 MB) 0.71s (4 MB) 7.5s (4 MB)

Table 2: Comparison of runtime and memory usage for population size N = 109 and varied sample size n.

Baselines. Algorithm D by Vitter (1984) is the
state-of-the-art of sequential sampling techniques. We
use the standard library implementation of D to com-
pare with it. Duplicate-Rejection is a commonly used
technique across various standard libraries7. Items are
drawn with-replacement and duplicates are rejected
with the help of a hash map to obtain a without-
replacement sample. The rejection rate grows rapidly
when the sample size gets close to the population size,
requiring reservoir sampling as a fallback. We use
Python’s standard library function random.sample

to compare with this method. Floyd’s sampling al-
gorithm is an elegant improvement by Bentley and
Floyd (1987) without rejections. The variants Sorted-
Duplicate-Rejection and Sorted-Floyd’s sort the sam-
pled positions first to report samples sequentially.

Runtime and Memory Usage. Table 2 shows ex-
tensive comparisons with the baselines. As expected
Hidden Shuffle and Vitter’s Algorithm D require vastly
less memory than other approaches. Hidden Shuffle
is almost an order of magnitude faster than Floyd’s,
slightly faster than Vitter’s Algorithm D and compara-
bly fast to Python’s standard library implementation
of Duplicate-Rejection. Sequential baselines based on
sorting are a lot slower. Even a Python implemen-
tation of Hidden Shuffle is nearly as fast as Sorted-
Floyd’s in C++. Due to the unusual slowdown of
Duplicate-Rejection for n = 108, we also tried running
the Python code with the alternative interpreter PyPy,
which achieves speed-ups through just-in-time compi-
lation. Using PyPy the aforementioned slowdown can-
not be observed, the performance almost matches pre-
compiled languages and Hidden Shuffle emerges as the
fastest approach.

7The Duplicate-Rejection technique is for instance em-
ployed in random.sample in Python (www.python.org) or
sample.int in R (www.r-project.org).

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1
·106

after x milliseconds

re
p

or
te

d
sa

m
p

le
s

Sorted-Duplicate-Rejection
Duplicate-Rejection
Vitter’s Algorithm D
Hidden Shuffle

Figure 2: Timeline for how many sampled elements
are reported after x milliseconds for a population size
N = 109 and sample size n = 106.

Latency results and number of variates. Next,
two sampling instances are examined in more detail,
where to compare the throughput and variate usage of
the different sampling approaches (implemented in D

to facilitate a comparison with Vitter’s Algorithm D).
Unlike for Table 2 the measurements are here con-
ducted from within D to obtain a temporal breakdown.
Figure 2 shows the timeline for a million and Figure 3
(cf. next page) for a billion sampled items, in each case
for a thousand times larger population. In both in-
stances, Hidden Shuffle reports the samples the fastest
and at a steady pace, closely followed by Vitter’s Al-
gorithm D and Duplicate-Rejection. Sorted-Duplicate-
Rejection is visibly delayed as it has to first collect and
sort the full sample before it can report any samples.
All four approaches generated in these experiments at
most 1.02n variates for a sample size of n.

Michael Shekelyan, Graham Cormode

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1
·109

after x seconds

re
p

o
rt

ed
sa

m
p

le
s

Sorted-Duplicate-Rejection
Duplicate-Rejection
Vitter’s Algorithm D
Hidden Shuffle

Figure 3: Timeline for how many sampled elements are
reported after x seconds for a population sizeN = 1012

and sample size n = 109.

5 Concluding Remarks

The proposed Hidden Shuffle method is shown to
posses many attractive features: it is very lightweight,
can be implemented with few lines of code, has strong
theoretical guarantees and shows uniformly superior
performance in practice. While the focus of this work
is simple random sampling, the new techniques could
also pave the way for solutions of more challenging
sampling problems. For instance, random partitions
for fixed block sizes could be obtained by maintaining
hierarchies of samples, since the memory and compu-
tation footprint is so small. Furthermore, the basic
idea of how to reduce without-replacement to with-
replacement sampling could make it easier to deal with
sampling problems in a distributed setting, where data
is spread over multiple machines.

Acknowledgements. This work is supported by
European Research Council grant ERC-2014-CoG
647557.

References

Ahrens, J. H. and Dieter, U. (1985). Sequential
random sampling. ACM Trans. Math. Softw.,
11(2):157–169.

Bebbington, A. (1975). A simple method of draw-
ing a sample without replacement. Journal of the
Royal Statistical Society: Series C (Applied Statis-
tics), 24(1):136–136.

Bentley, J. and Floyd, B. (1987). Programming pearls:
a sample of brilliance. Communications of the ACM,
30(9):754–757.

Bui, D. N. (2015). Cachediff: Fast random sampling.
CoRR, abs/1512.00501.

Cormode, G., Muthukrishnan, S., Yi, K., and Zhang,
Q. (2010). Optimal sampling from distributed
streams. In Symposium on Principles of Database
Systems (PODS), pages 77–86. ACM.

Devroye, L. (1986). Non-Uniform Random Variate
Generation. Springer.

Efraimidis, P. S. and Spirakis, P. G. (2006). Weighted
random sampling with a reservoir. Inf. Process.
Lett., 97(5):181–185.

Fan, C., Muller, M. E., and Rezucha, I. (1962). Devel-
opment of sampling plans by using sequential (item
by item) selection techniques and digital comput-
ers. Journal of the American Statistical Association,
57(298):387–402.

Jones, T. G. (1962). A note on sampling a tape-file.
Communications of the ACM, 5(6):343.

Knuth, D. E. (1969). The Art of Computer Pro-
gramming, Volume II: Seminumerical Algorithms.
Addison-Wesley.

Li, K.-H. (1994). Reservoir-sampling algorithms
of time complexity O(n(1 + log(N/n))). ACM
Transactions on Mathematical Software (TOMS),
20(4):481–493.

Nagaraja, H. (1992). Order statistics from discrete
distributions. Statistics, 23(3):189–216.

Sanders, P., Lamm, S., Hübschle-Schneider, L.,
Schrade, E., and Dachsbacher, C. (2018). Effi-
cient parallel random sampling - vectorized, cache-
efficient, and online. ACM Trans. Math. Softw.,
44(3):29:1–29:14.

Stadlober, E. (1990). The ratio of uniforms approach
for generating discrete random variates. Journal of
computational and applied mathematics, 31(1):181–
189.

Sunter, A. (1977). List sequential sampling with equal
or unequal probabilities without replacement. Jour-
nal of the Royal Statistical Society: Series C (Ap-
plied Statistics), 26(3):261–268.

Tirthapura, S. and Woodruff, D. P. (2011). Optimal
random sampling from distributed streams revis-
ited. In Distributed Computing DISC, pages 283–
297. Springer.

Vitter, J. S. (1984). Faster methods for random sam-
pling. Commun. ACM, 27(7):703–718.

Vitter, J. S. (1985). Random sampling with a reservoir.
ACM Trans. Math. Softw., 11(1):37–57.

Vitter, J. S. (1987). An efficient algorithm for sequen-
tial random sampling. ACM Trans. Math. Softw.,
13(1):58–67.

